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1 Introduction

Topic of the thesis

For the past decade, deep neural networks have continuously grown in capability and
capacity and excelled in various machine learning tasks, such as language processing,
image recognition, speech synthesis, video generation and others. The deep learning
methods can be grouped into two main classes: discriminative and generative approaches.

Discriminative models aim to answer specific questions about the data objects. For
example, determine what is depicted in a picture, count the number of people on CCTV
snapshots, and suggest an effective treatment for a patient given their measurements.
More formally, the discriminative methods model the conditional distribution p(y|x) given
the observed pairs (z,y), where x is an input object and y is a target label. Neural
networks have rapidly demonstrated remarkable performance in a wide range of predictive
tasks due to the emergence of large labeled datasets and the development of specialized
hardware, e.g., graphics processing units (GPU). However, there are still many practical
challenges in discriminative problems. For example, the data objects can have missing
observations that could be informative for more accurate model predictions. Sometimes,
collecting a large labeled dataset can be challenging and costly and hence, one requires
the top-performing methods that have access only to few labeled samples during training.
Also, in some areas and applications, data may be subject to the General Data Protection
Regulation (GDPR) and contain private or sensitive user data. This problem might limit
the use and collection of such data for developing machine learning methods.

ontrary to discriminative modeling, the fundamental goal of generative models is to
approximate the data distribution pg., given the finite set of observed objects D =
{zg,...,xx} from this distribution. Deep generative methods approximate pg., using a
deep neural network with parameters 6. The parameters are learned to minimize the
distance between the model distribution py and pggee: 0= mein d(Pdata; Pe)- The distance
d(-,-) may be an arbitrary similarity measure between distributions, e.g., KL divergence.
An illustrative example of the generative problem: given Vincent van Gogh’s paintings,
learn the model 0 to draw the new paintings in the same style. Compared to the similar
predictive problem “Who is the author of the painting?”, one can correctly conclude that

generative tasks are usually significantly more sophisticated than discriminative ones.



There exist many classes of deep generative models, and they can be grouped into
two major categories: likelthood-based models and implicit generative models. Likelihood-
based models explicitly learn py via maximizing the likelihood directly or its lower bound.
The examples of likelihood-based methods include autoregressive models [1], diffusion
models [2, 3], normalizing flows [4, 5, 6], variational autoencoders [7]. On the other hand,
implicit models do not have direct access to the density function but can still produce
plausible samples from the target distribution. The prominent representative is generative
adversarial networks (GANs) [8]. Each class of generative models has its strengths and
weaknesses. For this reason, different kinds of generative models can be preferable in
different practical applications and domains. We refer the reader to the comprehensive
overviews of the existing generative models [9, 10, 11] for details.

Deep generative modeling has been thoroughly investigated in recent years and
achieved impressive results in various areas. Today, people can generate highly realis-
tic images based on text descriptions [12, 13|, produce advertising videos [14] and chat
with “intelligent” systems like GPT4 [15]. These successes raise the question of whether
so powerful deep generative models can complement established discriminative solutions.
Many research works have already provided an affirmative answer to this question in dif-
ferent areas [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. This thesis extends this line of
works and considers deep generative models for the following practical applications: i)
missing data imputation in time series to improve the performance of classification and
regression methods; ii) image semantic segmentation when the amount of labeled data is
scarce; iii) tabular data generation to design high-quality and private synthetic datasets

for downstream tabular tasks.

Relevance

The thesis addresses the applications of deep generative models for three different fun-
damental machine learning problems. Below, we briefly discuss each of them in more
detail.

The first work focuses on the time series imputation problem. The task aims to fill in
missing observations in real-world time series data. Multivariate time series with missing
values are prevalent in areas such as healthcare and finance and have increased in number

and complexity over the past years. Missing values often occur due to faulty measurement



devices, costly procedures, and human mistakes. As a result, the data can lack some
informative features, causing machine learning methods to make incorrect predictions.
Recent research has shown that accurate time series imputation significantly enhances
the performance on downstream tasks [27, 28, 29].

Popular deep learning imputation approaches usually apply recurrent neural networks
(RNNs) for sequence modeling [27, 30, 31, 29]. Other works combine RNNs with an ad-
versarial objective [32, 28, 33] to improve the imputation performance. In this thesis, we
make the first attempt to use deep probabilistic generative models for time series impu-
tation. Specifically, we propose a variational autoencoder (VAE) with Gaussian process
(GP) prior and demonstrate its effectiveness on the image and healthcare datasets with
a temporal component. The follow-up work [20] proposes the probabilistic imputation
method based on diffusion models and further enhances the imputation performance.
Moreover, the appealing property of probabilistic imputation methods is that they can
provide uncertainty estimations for the predicted values. This property is crucial for
interpretive estimates and the trustworthiness of the method, especially if one aims to
integrate it into medical applications.

The second work investigates generative models in the context of image semantic seg-
mentation. Semantic segmentation is a fundamental computer vision problem that aims
to recognize elements in an image at the pixel level. Opposed to image classification,
where the model typically predicts a single label for an image, semantic segmentation
seeks to assign each pizel to the class label. This makes semantic segmentation a highly
challenging problem that would benefit from large labeled datasets. However, the accu-
rate and consistent annotation of many images requires tremendous human effort and
cost. For this reason, the methods that can provide strong segmentation performance
given only few labeled images are in high demand [18, 19, 34].

Deep generative models have already been applied for semantic segmentation. Most
methods leverage state-of-the-art GANs [35] as infinite generators of synthetic labeled
data. This data is then used to train the semantic segmentation models. Some meth-
ods [36, 37, 38| exploit the evidence that the latent space of the GANs contains a direction
that allows producing synthetic images along with foreground/background segmentation
masks. Other works [18, 19] exploit intermediate pixel-level representations of GANs to
predict segmentation masks for generated images. These methods demonstrate promising

results in the setting when there is a limited number of human-annotated images.



Diffusion probabilistic models (DPMs) demonstrate state-of-the-art image generation
in terms of both image quality and diversity [39, 12, 13]. The advantages of DPM are
successfully exploited in generative tasks such as image colorization [40], inpainting [40],
super-resolution [41, 42], and semantic editing [43], where DPMs often achieve more im-
pressive results than GANs. However, it has not been explored whether DPMs can be
effectively applied to discriminative vision problems. We have investigated intermediate
representations of DPMs and revealed that they contain the pixel-level semantic infor-
mation of the input image. Following [18], we propose a novel semantic segmentation
method that exploits these image representations. We demonstrate its superiority over
GAN-based and self-supervised approaches in the label-efficient setting.

Finally, we extend the framework of diffusion probabilistic models to the tabular do-
main. Tabular datasets are usually isolated and limited in size, as opposed to textual
or image data that is massively available on the Internet. Often, tabular data contains
personal, private or sensitive information and hence cannot be publicly shared with-
out violating GDPR-like regulations. Deep generative models in the tabular domain are
mainly used to mitigate this problem by replacing real user data with synthetic data.
At the same time, the synthetic dataset has to inherit the properties of the real dis-
tribution to be useful for downstream applications. The recent works have developed
many generative modeling methods, including tabular VAEs [44] and GAN-based ap-
proaches [44, 22, 23, 24, 25, 26, 45, 46, 47, 48] Motivated by the success of diffusion mod-
els in other domains, we introduce TabDDPM — a diffusion model that can be applied
to arbitrary tabular datasets and handles various feature distributions. We extensively
evaluate TabDDPM on a wide set of benchmarks and demonstrate its superiority over

existing GAN/VAE alternatives.

2 Main Results and Conclusions

Contribution. The main results of the work are formulated below.

1. We propose a novel probabilistic model: a variational autoencoder with a Gaussian
process prior in the latent space for effective time series data modeling. The de-
signed model is applied for the time series imputation task. We demonstrate that
our approach outperforms several classical and deep learning-based data imputation

methods on multivariate time series from the computer vision and healthcare do-



mains. In addition, the method improves the smoothness of the imputations and

provides interpretable uncertainty estimates.

2. We reveal that the state-of-the-art diffusion models have meaningful pixel-level image
representations. Based on this knowledge, we propose a novel semantic segmentation
approach that outperforms previous state-of-the-art generative and self-supervised

methods when few annotated images are available.

3. We propose TabDDPM — a diffusion model for tabular data generation. This model
outperforms other generative models for this task and can be useful for practitioners
to replace private and sensitive data with generated data. This potentially takes a
step toward the safe sharing of a company’s internal data to develop high-quality

prediction methods.

Theoretical and practical significance. The proposed methods and empirical find-
ings contribute to the increasing prevalence of generative models for predictive tasks in
machine learning. In scenarios characterized by a scarcity of labeled data, we demonstrate
that a pretrained diffusion model can serve either as an effective data engine or as a strong
discriminative model out of the box. For missing data imputation, we provide evidence
that deep probabilistic modeling is a promising paradigm in healthcare applications, where
it can recover missing patient measurements in an interpretable manner. Moreover, the
thesis introduces a novel state-of-the-art approach for tabular data synthesis, enabling
the training of highly effective machine learning methods in privacy-concerned scenarios.

Key aspects/ideas to be defended:

1. A deep probabilistic time series imputation method based on a variational autoen-

coder that uses a Gaussian process prior for better time series modeling;

2. Investigation of the internal representations of diffusion models, revealing the pres-
ence of useful fine-grained semantic information about input images. A semantic
segmentation method that effectively utilizes the image representations extracted

from pretrained diffusion models when labeled data is limited;

3. A diffusion-based generative approach for tabular data modeling.

Personal contribution. In the first work, the author was responsible for the technical

contribution of the paper: developing the method and conducting most experiments and



analysis. In the second work, the author proposed the core scientific ideas, collected the

datasets, implemented the method, conducted most experiments and analysis and wrote

the text. In the third work, the author formulated the key ideas, organized the research

project, designed the experiment pipelines, and contributed to writing the paper.
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Volume and structure of the work. The thesis contains an introduction, the

content of publications, a conclusion and includes the text of publications. The total

volume of the thesis is 61 pages.



3 Content of the work

3.1 GP-VAE: Deep Probabilistic Time Series Imputation

This work addresses the problem of multivariate time series imputation, i.e., filling in
missing values in time series data. Multivariate time series consist of multiple correlated
univariate time series (“channels”) and require imputation models that consider both
temporal correlations within each channel and correlations across channels.

We denote a multivariate time series of length 7, as X € RT>4, A data point x; =
[Tty -y Ty - 2a] T € RY is measured at T consecutive time points 7 = [rq, ... ,TT]T
with 7, <7, Vt and 7, = 0.

Then, we assume that any number of these data features x;; can be missing. Thus,
each data point can be partitioned into observed and unobserved features: x7 :=
[z | 24 1s observed] and X} := [y | 24 is missing] with x7 U x}" = x, respectively.

Missing value imputation describes the problem of estimating the true values of the
missing features X := [x}"],.; given the observed features X° := [x?], .. Many methods
assume the different data points to be independent, in which case the inference problem
reduces to T' separate problems of estimating p(x}" | x?). In the time series setting, this
independence assumption is not satisfied, which leads to the more complex estimation
problem of p(x}* | x{.r).

Method overview. We design a method based on variational autoencoders (VAEs)
that map multivariate time series with missing observations into a latent space in which
every dimension is fully determined. In the latent space, the temporal dynamics are
modeled with a Gaussian process (GP). Since many features in the data might be corre-
lated, the latent representation captures these correlations and uses them to reconstruct
the missing values. Moreover, the GP prior in the latent space encourages the model to
embed the data into a representation in which the temporal dynamics are smoother and
more easily explainable than in the original data space. Finally, the decoder transforms
the learned latent representation to estimate the missing values in the original feature
space. The scheme of the proposed model is presented in Figure 1. The model comprises

generative and infenrence models and we describe them in more detail below.

V. Fortuin*, D. Baranchuk*, G. Réatsch, S. Mandt. GP-VAE: Deep probabilistic time series imputation. AISTATS2020
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Figure 1: Overview of the GP-VAE model consisting of a convolutional inference network, a deep feed-
forward generative network and a Gaussian process prior with mean function m(-) and kernel function

k(-,-) in latent space. The several CNN blocks as well as the MLP blocks are sharing their parameters.

Generative model. First, we apply GP in the latent space of a variational autoen-
coder. Specifically, we assign a latent variable z, € R* for every x;, and model temporal
correlations in this reduced representation using a GP, z(7) ~ GP(m.(-),k.(-,-)). This
way, we decouple the step of filling in missing values and capturing instantaneous corre-
lations between the different feature dimensions from modeling dynamical aspects.

A remaining practical difficulty we encountered is that many multivariate time series
display dynamics at multiple time scales. One of our main motivations is to model time
series that arise in medical setups where doctors measure different patient variables and
vital signs, such as heart rate, blood pressure, etc. To model data that varies at multiple
time scales, we consider the Cauchy kernel for our Gaussian process prior: This kernel
has previously been successfully used in robust dynamic topic modeling where similar
multi-scale time dynamics occur [49]. Given the latent time series z;.r, the observations

x; are generated time-point-wise by

pe(Xt | Zt) =N (ge(zt), UQI) ) (1)

where gg(+) is a potentially nonlinear function parameterized by the parameter vector 6.
In our experiments, the function gy is implemented by a multilayer perceptron (MLP).
Inference model. To learn the parameters of the deep generative model described
above and to efficiently infer its latent state, we are interested in the posterior distribution
p(z1.7 | X1.7). Since the exact posterior is intractable, we use variational inference [50, 51,

52] and amortize it using deep neural network [7]. To make our variational distribution
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more expressive and capture the temporal correlations of the data, we employ a structured
variational distribution [53] with efficient inference that leads to an approximate posterior,
which is also a GP. We approximate the true posterior p(zy.r; | x1.7) with a multivariate

Gaussian variational distribution:
q(z105 | X0.p) = N (my, AT (2)

where j indexes the dimensions in the latent space. Our approximation implies that our
variational posterior can reflect correlations in time, but breaks dependencies across the
different dimensions in z-space (which is typical in VAE training [7, 54]).

We choose the variational family to be the family of multivariate Gaussian distributions
in the time domain, where the precision matrix A, is parameterized as a tridiagonal
matrix. Samples from ¢ can thus be generated in linear time in 7" [55, 56, 57] as opposed to
the cubic time complexity for a full-rank matrix. Moreover, compared to a fully factorized
variational approximation, the number of variational parameters are merely doubled. Note
that while the precision matrix is sparse, the covariance matrix can still be dense, allowing
to reflect long-range dependencies in time.

We amortize the inference over m; and A; using an inference network g, (-). Following
VAE training, the parameters of the generative model # and inference network ¢ can be

jointly trained by optimizing the evidence lower bound (ELBO),

T
log p(X*) 2 > By a1 108 po(x7 | 20)] = B Dicr [ap(zar | X37) | p(2ar)]  (3)

t=1
We evaluate the ELBO only on the observed features of the data since the remaining fea-
tures are unknown, and set these missing features to a fixed value (zero) during inference.

Results. We performed experiments on the benchmark data set Healing MNIST [60],
which combines the classical MNIST data set [61] with properties common to medical time
series, the SPRITES data set [62], and on a real-world medical data set from the 2012
Physionet Challenge [63]. We compared our model against conventional single imputation
methods [58], GP-based imputation [64], VAE-based methods that are not specifically de-
signed to handle temporal data [7, 59], and modern state-of-the-art deep learning methods
for temporal data imputation [65, 27].

We observe strong quantitative (Tab. 1, 2) and qualitative (Fig. 2) evidence that our
proposed model outperforms most baseline methods in terms of imputation quality on all

three tasks and performs comparable to the state of the art (BRITS) on the medical data.
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Table 1: Performance of the different models on the Healing MNIST test set and the SPRITES test
set in terms of negative log likelihood [NLL] and mean squared error [MSE] (lower is better), as well as

downstream classification performance [AUROC] (higher is better).

Healing MNIST SPRITES
Model NLL MSE AUROC MSE
Mean imputation [58] - 0.168 % 0.000 0.938 + 0.000 0.013 £ 0.000
Forward imputation [58] - 0.177 £+ 0.000 0.935 £+ 0.000 0.028 £ 0.000
VAE [7] 0.599 £ 0.002  0.232 £ 0.000  0.922 £ 0.000  0.034 £ 0.000
HI-VAE [59] 0.372 £+ 0.008 0.134 £ 0.003 0.962 £+ 0.001 0.035 £ 0.000
GP-VAE (proposed) 0.341 + 0.007 0.117 + 0.002 0.960 £ 0.002 0.002 £+ 0.000

Table 2: Performance of the different models on the Physionet data set in terms of AUROC of a logistic

regression trained on the imputed time series.

Model AUROC
Mean imputation [58] 0.703 £ 0.000
Forward imputation [58] 0.710 £ 0.000
GP [64] 0.704 + 0.007
VAE [7] 0.677 £ 0.002
HI-VAE [59] 0.686 £ 0.010
GRULGAN [65] 0.702 + 0.009
BRITS [27] 0.742 + 0.008
GP-VAE (proposed) 0.730 + 0.006
— Forward — GP-VAE —— BRITS

Figure 2: Imputations of several clinical variables with different amounts of missingness. BRITS (red) and
forward imputation (green) yield single imputations, while the GP-VAE (blue) allows to draw samples
from the posterior. The GP-VAE produces smoother curves, reducing noise from the original input, and

exhibits an interpretable posterior uncertainty.
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Figure 3: Overview of the proposed method. (1) 2o — x: by adding noise according to g(xt|xo).
(2) Extracting feature maps from a noise predictor eg(zy,t). (3) Collecting pixel-level representations by
upsampling the feature maps to the image resolution and concatenating them. (4) Using the pixel-wise

feature vectors to train an ensemble of MLPs to predict a class label for each pixel.

3.2 Label-efficient Semantic Segmentation with Diffusion Models

In the following work, we investigate the representations learned by the state-of-the-art
diffusion probabilistic models (DPMs) and show that they capture high-level semantic
information valuable for semantic segmentation and outperforms the alternatives in the
few-shot operating point.

Background. Typically, diffusion models transform noise z7~N (0, ) to the sample
o by gradually denoising z7 to less noisy samples x;. Following a forward diffusion

process, a noisy sample z; can be obtained directly from a data point xg:

q(xi|z0) = N (45 vVauwo, (1 — ay)I),
.Tt:\/O_é_tZ'0+ \/].—O_ét, NN(O,].),

where oy =1 — 34, ay = Hizl a, and define the schedule of the diffusion process.

(4)

A pretrained DDPM approximates a reverse diffusion process:

Po(i-1|ze) = N (2115 (x4, 1), o (4, 1)). (5)

In practice, the neural network €y(z;, t) predicts the noise component at a time step ¢; the
mean is a linear combination of this noise component and x;. The covariance predictor

Yg(xy,t) is usually a constant scalar value for the particular step t.

D. Baranchuk, I. Rubachev, A. Voynov, V. Khrulkov, A. Babenko. Label-Efficient Semantic Segmentation with Diffusion
Models. ICLR2022
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Figure 4: Examples of k-means clusters (k=5) formed by the features extracted from the UNet decoder
blocks {6,8,10,12} on the diffusion steps {50,200, 400,600,800}. The clusters from the middle blocks

spatially span coherent semantic objects and parts.

The denoising model eg(xy,t) is typically parameterized by different variants of the
UNet architecture [66], and we investigate the state-of-the-art one proposed in [39).

Extracting representations. For a given real image 2o € RE*W>3 one can compute
T sets of activation tensors from the noise predictor network €(zy,t). The overall scheme
for a timestep t is presented in Figure 3. First, we corrupt zy by adding Gaussian noise
according to Equation (4). The noisy x; is used as an input of €p(z,t) parameterized
by the UNet model. The UNet’s intermediate activations are then upsampled to H x W
with bilinear interpolation. This allows treating them as pixel-level representations of xg.

DPM representation analysis. Figure 4 shows the k-means clusters (k=5) formed
by the features extracted by the FFH(Q checkpoint from the different blocks and diffusion
steps can span coherent semantic objects and object-parts. In the deeper blocks, the
features correspond to coarse semantic masks, while the shallow ones can discriminate
between fine-grained face parts but exhibit less semantic meaningness for coarse fragmen-
tation. Across different diffusion steps, the most meaningful features correspond to the
later ones. We attribute this behavior to the fact that on the earlier steps of the reverse
process, the global structure of a DDPM sample has not yet emerged, therefore, it is
hardly possible to predict segmentation masks at this stage.

Few-shot semantic segmentation method. The potential effectiveness of the in-
termediate DDPM activations observed above implies their usage as image representations

for dense prediction tasks. Figure 3 schematically presents our overall approach for im-
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Method Bedroom-28 FFHQ-34 Cat-15 Horse-21  CelebA-19* ADE Bedroom-30*

ALAE 200 £1.0 481+13 — — 49.7 £ 0.7 15.0 £ 0.5
VDVAE — 573 £ 1.1 — — 54.1 £ 1.0 —
GAN Inversion 139+ 0.6 51.7+08 214+17 17.7+04 51.5+23 11.1 £ 0.2
GAN Encoder 224+£16 539+13 320+£18 26707 53908 15.7 £ 0.3
SwAV 424 £17 569+13 451+£21 540+£09 524+£13 30.6 £1.6
MAE 45.0 2.0 58.8 1.1 524 +23 634+14 57.8=+04 31.7£18

DDPM (Ours) 49.4 + 1.9 59.1 + 1.4 53.7 + 3.3 65.0 £ 0.8 59.9 + 1.0 34.6 + 1.7

Table 3: The comparison of the segmentation methods in terms of mean IoU. (*) On CelebA-19 and

ADE Bedroom-30, we evaluate models pretrained on FFHQ-256 and LSUN Bedroom, respectively.

age segmentation, which exploits the discriminability of these representations. In more
detail, we consider a few-shot semi-supervised setup, when a large number of unlabeled
images {X1,..., Xy} C REXWx3 from the particular domain are available, and only
for n training images {X1,..., X, } € RT*W>3 the groundtruth K-class semantic masks
{vi,...,Y,} € REWx{LwK} are provided.

The pretrained diffusion model is used to extract the pixel-level representations of the
labeled images using the subset of the UNet blocks and diffusion steps ¢. In this work, we
use the representations from the middle blocks B={5,6,7,8,12} of the UNet decoder and
later steps t={50, 150, 250} of the reverse diffusion process. The extracted representations
from all blocks B and steps t are upsampled to the image size and concatenated, forming
the feature vectors for all pixels of the training images. Then, following [18], we train an
ensemble of independent multi-layer perceptrons (MLPs) on these feature vectors, which
aim to predict a semantic label of each pixel available for training images.

To segment a test image, we extract its DDPM-based pixel-wise representations and
use them to predict the pixel labels by the ensemble. The final prediction is obtained by
majority voting.

Datasets. In our evaluation, we mainly work with the “bedroom”, “cat” and “horse”
categories from LSUN [67] and FFHQ-256 [35]. As a training set for each dataset, we
consider several images for which the fine-grained semantic masks are collected following

the protocol from [18]. For each dataset, a professional assessor was hired to annotate
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Figure 5: The examples of segmentation masks predicted by our method on the test images along with

the groundtruth annotated masks.

train and test samples. We denote the collected datasets as Bedroom-28, FFHQ-34, Cat-
15, Horse-21, ADE-Bedroom-30, CelebA-19 where the number corresponds to the number
of semantic classes.

Methods. In the evaluation, we compare our DDPM-based method to the similar
one but extract the features from various state-of-the-art self-supervised and generative
models: MAE [68], SwAV [69], GAN Inversion + StyleGAN, GAN Encoder, VDVAE [70]

Main results. The comparison of the methods in terms of the mean IoU measure
is presented in Table 3. The results are averaged over 5 independent runs for different
data splits. Additionally, we provide several qualitative examples of segmentation with

our method in Figure 5. Below, we highlight several key observations:

e The proposed method based on the DDPM representations significantly outperforms

the alternatives on most datasets.

e The MAE baseline is the strongest competitor to the DDPM-based segmentation
and demonstrates comparable results on the FFHQ-34 and Cat-15 datasets.

Overall, the proposed DDPM-based segmentation outperforms the baselines that ex-
ploit alternative generative models and also the baselines trained in the self-supervised
fashion. This result highlights the potential of using state-of-the-art DDPMs as strong

unsupervised representation learners.

16



Figure 6: TabDDPM scheme for classification tabular problems; ¢, y and ¢ correspond to a diffusion

timestep, a class label, and logits, respectively.
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3.3 TabDDPM: Modelling Tabular Data with Diffusion Models

Finally, we present TabDDPM, a novel DPM designed specifically for generating tabular
data comprising both numerical and categorical features. TabDDPM surpasses existing
tabular data generation methods based on GANs and VAEs. Additionally, we demonstrate
that simple interpolation-based techniques, such as SMOTE [71], can produce remarkably
effective synthetic data with high ML efficiency. However, in privacy-sensitive contexts
where synthetic data is needed to replace real user data that cannot be shared, TabDDPM
offers a preferable solution compared to SMOTE.

TabDDPM employs multinomial diffusion to model categorical and binary fea-
tures and Gaussian diffusion for numerical features. Specifically, a tabular data sample
T = [Tyum, Teatys - - - » Teatee] cONSists of Ny, numerical features z,, € RY¥=» and C' cat-

egorical features x ., with K; categories each. As for preprocessing, categorical features

ohe

ot €10, 1}, and numerical features are normalized using

are one-hot encoded, i.e., x
the Gaussian quantile transformation from the scikit-learn library [72]. Consequently,
the input zy has a dimensionality of (Nnum + Zil Ki). The reverse diffusion step in

TabDDPM is modeled by an MLP architecture adapted from [73]:

MLP(z) = Linear (MLPBlock (... (MLPBlock(x)))) (©)

MLPBlock(z) = Dropout(ReLU(Linear(z)))
The model is trained by minimizing a sum of Gaussian and multinomial diffusion
loss terms. The former corresponds to L¥™°[2] objective for numerical features. The

latter represents a sum of KL divergences between multinomial distributions, L%, for each

A. Kotelnikov, D. Baranchuk, I. Rubachev, A. Babenko. TabDDPM: Modelling Tabular Data with Diffusion Models.
ICML2023
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categorical feature. The multinomial diffusion loss is additionally divided by the number
of categorical features. The overall objective for a time step ¢ can be described as follows:

LtTabDDPM _ L:imple n ZZSCfC Lt 7)

The model is parametarized to predict e~N(0, 1) for numerical features and category

ohe

cat; for multinomial ones. For classification datasets, the model is condi-

probabilities &
tioned on a class label, i.e., pyp(zi—1|zs,y) is learned. For regression datasets, we con-
sider a target value as an additional numerical feature and learn the joint distribution
Po(Ti—1,Ye—1]x, yr). TabDDPM for classification datasets is illustrated in Figure 6.

Datasets. For performance evaluation of tabular generative models, we consider a
diverse set of 15 real-world public datasets, previously used for evaluating tabular models
in [26, 73]. These datasets vary in size, nature, number of features, and their distributions.

Baselines. Given the large number of generative models proposed for tabular data,
we evaluate TabDDPM against the leading approaches from each generative modeling
paradigm: TVAE [44], CTABGAN [26], CTABGAN+ [74]. Additionally, we include
a “shallow” interpolation-based method SMOTE [71] and ”generate” a synthetic point as
a convex combination of a real data point and its k-th nearest neighbor from the dataset.

Evaluation measure. Our primary evaluation measure is machine learning (ML)
efficiency [44]. In more detail, ML efficiency quantifies the performance of classification
or regression models trained on synthetic data and evaluated on the real test set. In
our experiments, we evaluate ML efficiency w.r.t. CatBoost [75], GBDT implementation
providing state-of-the-art performance on tabular tasks [73].

Qualitative comparison. First, we investigate the ability of TabDDPM to model
the individual and joint feature distributions. We visualize the typical individual feature
distributions for real and synthetic data in Figure 7.

In most cases, TabDDPM produces more realistic feature distributions compared with
TVAE and CTABGAN+. The advantage is more pronounced (1) for numerical features,
which are uniformly distributed, (2) for categorical features with high cardinality, and
(3) for mixed-type features that combine continuous and discrete distributions. Then,
we also visualize the differences between the correlation matrices computed on real and
synthetic data for different datasets, see Figure 8. In comparison with CTABGAN+ and

TVAE, TabDDPM generates synthetic datasets with more realistic pairwise correlations.
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Figure 7: The individual feature distributions for the real data and the data generated by TabDDPM,
CTABGAN+, and TVAE. TabDDPM produces more realistic feature distributions in most cases.
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Table 4: The values of machine learning efficiency computed w.r.t. the state-of-the-art tuned CatBoost

model.
AB (r2) AD (r1) BU r1) CA (r2) CAR r1) CH r1 DE r1) DI r1)
CTGAN 0.420+.004  0.789+.001 0.867+.003  0.686+.003  0.730+.001 0.723+.006 0.699=.002 0.459+.096
TVAE 0.433+.008 0.781+.002 0.864+.005 0.752+.001 0.717+.001 0.732+.006 0.656+.007  0.714+.039
CTABGAN - 0.783+.002  0.855+.005 - 0.717+.001 0.688+.006  0.644+.011  0.731+.022
CTABGAN+  0.467+.004  0.772+.003  0.884+.005  0.525+.004  0.733+.001 0.702+.012  0.686+.004 0.734+.020
SMOTE 0.549+.005  0.791+.002 0.891+.003 0.840+.001  0.732+.001 0.743+.005 0.693+.003 0.683+.037

TabDDPM 0.550+.010 0.795+.001 0.906+.003 0.836+.002 0.737+.001 0.755+.006 0.691+.004 0.740+.020

Real 0.556+.004 0.815+.002 0.906+.002 0.857+.001 0.738+.001 0.740+.009  0.688+.003 0.785+.013
FB (r2 GE r1) HI r1) HO (r2) IN (r2) KI (r2) MI (r1) WI (r1)
CTGAN 0.443+.005 0.333+.013 0.575+.006 0.433+.005 0.745+.009 0.772+.005 0.783+.005 0.749+.015
TVAE 0.685+.003 0.434+.006 0.638+.003 0.493+.006 0.784+.010 0.824+.003 0.912+.001 0.501+.012
CTABGAN - 0.392+.006  0.575+.004 - - - 0.889+.002  0.906=.019
CTABGAN+  0.509=.011 0.406+.009  0.664+.002  0.504+.005  0.797+.005  0.444+.014  0.892+.002  0.798+.021
SMOTE 0.803+.002 0.658:.007 0.722:.001 0.662+.004 0.812:+.002 0.842:.004 0.932:.001 0.913:.007

TabDDPM 0.713+.002 0.597+.006 0.722+.001 0.677+.010 0.809+.002 0.833+.014 0.936:.001 0.904+.009

Real 0.837+.001 0.636+.007 0.724+.001 0.662+.003 0.814+.001 0.907+.002 0.934+.000 0.898+.006

These illustrations indicate that TabDDPM is more flexible than alternatives and produces
superior synthetic data.

Machine Learning efficiency. Then, we compare TabDDPM to alternative genera-
tive models in terms of ML efficiency. From each generative model, we sample a synthetic
dataset with the size of a real train set. This synthetic data is then used to train a classi-
fication /regression model. In our experiments, classification performance is evaluated by
the F1 score, and regression performance is evaluated by the R2 score.

We compute ML efficiency w.r.t. the current state-of-the-art model for tabular data.
Specifically, we consider CatBoost [75] and the MLP architecture from [73] for evaluation.

Main results. The ML efficiency values are presented in Table 4. TabDDPM sig-
nificantly outperforms TVAE and CTABGAN+ on most datasets, which highlights the
advantage of diffusion models for tabular data as well as demonstrated for other domains
in prior works. The interpolation-based SMOTE method demonstrates the performance
competitive to TabDDPM and often significantly outperforms the GAN/VAE approaches.

Overall, TabDDPM provides state-of-the-art generative performance and can be used

as a source of high-quality synthetic data. Interestingly, in terms of ML efficiency, a
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simple “shallow” SMOTE method is competitive to TabDDPM, which raises the question
if sophisticated deep generative models are needed.

Privacy. Here, we explore TabDDPM in privacy-concerned settings, e.g., sharing the
data without disclosure of personal or sensitive information. In these setups, we aim to
produce high-quality synthetic data that does not reveal the records from original data.

We measure the privacy of the generated data as a mean Distance to Closest Record
(DCR) [26]. Low DCR values indicate that synthetic samples essentially mimic some real
datapoints and can violate privacy requirements. Higher DCR values indicate that the

)

generative model can produce “new” records rather than just near duplicates of the real
data. Note that out-of-distribution data, e.g., random noise, will also provide high DCR.
Therefore, DCR needs to be considered along with ML efficiency together.

Table 5 presents the DCR values for TabDDPM, SMOTE, CTABGAN+ and TVAE.
TabDDPM is more private than SMOTE and less private than GAN/VAE alternatives.

We attribute this to significantly lower ML efficiency of GAN/VAE-based baselines.

AB AD BU CA CAR CH DE DI

TVAE 0.088 0.220 0.226 0.056 0.010 0.241 0.096 0.146
CTABGAN+ 0.081 0.400 0.242 0.070 0.020 0.235 0.131 0.204
SMOTE 0.018 0.082 0.080 0.016 0.007 0.099 0.054 0.074

TabDDPM 0.061 0.295 0.168 0.045 0.016 0.166 0.061 0.308

FB GE HI HO IN KI MI WI

TVAE 1.418 0.171 0.497 0.127 0.102 0.200 0.025 0.020
CTABGAN+ 0.666 0.169 0.533 0.129 0.124 0.390 10.761 0.027
SMOTE 0.264 0.041 0.209 0.066 0.050 0.090 0.012 0.009

TabDDPM 0.785 0.076 0.473 0.096 0.050 0.252 0.574 0.023

Table 5: Comparison in terms of mean Distance to Closest Record (DCR) (higher is better). TabD-
DPM provides better DCR values compared with SMOTE but underperforms compared with TVAE and
CTABGAN+. We attribute this to significantly lower ML efficiency of GAN/VAE-based alternatives.
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4 Conclusion

The final section summarizes the main contributions of the thesis:

1. We have developed a novel multivariate time series imputation approach using a deep
probabilistic model that combines variational autoencoders and Gaussian processes.
The model maps the missing data from the input space into a latent space where
each dimension is determined. In the latent space, a GP prior is used to better
capture the temporal correlations of the data, resulting in more accurate imputations.
The extensive experiments show that the proposed model produces state-of-the-art
imputations, significantly improving the predictive methods on datasets with high

missing rates.

2. Our research shows that pretrained diffusion models (DPMs) serve as effective repre-
sentation learners for predictive computer vision tasks. Compared to GANs, DPMs
offer simpler feature extraction without the need for an additional encoder and de-
liver superior generative quality. These benefits enable DPMs to achieve state-of-
the-art performance in few-shot semantic segmentation, outperforming leading self-

supervised approaches.

3. We have explored the diffusion framework for tabular data modeling and introduced
TabDDPM, a method capable of generating data with various feature types, includ-
ing numerical, ordinal, and categorical. Our method generates significantly more
realistic tabular data compared to previous GAN- and VAE-based approaches. Con-
sequently, our synthetic data can be used to train classification and regression models,

particularly in scenarios where preserving user data privacy is crucial.
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